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Nonlocal Symmetries and Associated Conservation
Laws for Wave Equations with Variable Speeds
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We show that one can generate a class of nontrivial conservation laws for second-
order partial differential equations using some recent results dealing with the
action of any Lie–Bäklund symmetry generator of the equivalent first-order
system on the respective conservation law. These conserved vectors are nonlocal as
they are constructed from associated nonlocal symmetries of the partial differential
equation. We demonstrate the complete procedure on certain classes of wave
equations with variable wave speeds. Some of these have been considered in the
literature using alternative methods.

1. INTRODUCTION

The generation of conservation laws of a system of differential equations
from known ones using the symmetry properties of the system has been
investigated over the years. In the case of ordinary differential equations,
this result is well known as the “related integral theorem” and has found
widespread application, for example, in classical mechanics (see, e.g., Sarlet
and Cantrijn, 1981, and references therein). For a system of partial differential
equations, a similar result has been established for canonical Lie–Bäcklund
symmetries (see, e.g., Ibragimov, 1985). This result was extended to any
Lie–Bäcklund symmetry without recourse to a Lagrangian formulation by
Kara and Mahomed (2000).

1 Department of Mathematics and Centre for Differential Equations, Continuum Mechanics and
Applications, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa; e-
mail: kara@cam.wits.ac.za

2 Department of Mathematics, Northwest University Xi’an, 710069, China; e-mail:
qcz@ihw.com.cn

3 To whom correspondence should be addressed.

2503
0020-7748/00/1000-2503$18.00/0 q 2000 Plenum Publishing Corporation



2504 Kara and Qu

Anco and Bluman (1996) present a detailed discussion on the local
nature of conservation laws derived from Noether’s theorem. Nonlocal conser-
vation laws are, by way of an identity, derived from nonlocal, canonical
symmetries without reliance on a Lagrangian. In this article, we apply the
identity derived by Kara and Mahomed (2000) to construct (nonlocal) conser-
vation laws from nonlocal symmetries (not necessarily canonical) for some
classes of wave equations with variable wave speeds. The nonlocal symmet-
ries are, to be precise, potential symmetries which are a subclass of nonlo-
cal symmetries.

To this end, we have the following definition with specific reference to
the wave equation:

utt 5 c2(x)uxx (1.1)

where c(x) is the variable wave speed. Equation (1.1) can be written as the
first-order system

ut 5 c2(x)vx , ux 5 vt (1.2)

Then any (Lie) symmetry vector X 5 j­/­x 1 t­/­t 1 h­/­u 1 f­/­v of
(1.2) is a nonlocal symmetry of (1.1) since v contains integrals of u (this latter
statement is sometimes used as a formal definition for nonlocal symmetries).
Bluman and Kumei (1986) give a detailed classification of the Lie point
symmetries of (1.2) for some classes of c(x). Also, Anco and Bluman (1996)
present an account of nonlocal conservation laws of (1.1) constructed from
a formula involving canonical symmetries.

We briefly outline the notation and give the necessary preliminaries.
Let x 5 (x1, x2, . . . , xn) P Rn be the independent variables with coordi-

nates xi, and let u 5 (u1, u2, . . . , um) P Rn be the dependent variables with
coordinates ua. The partial derivatives of u with respect to x are connected
by the operator of total differentiation

Di 5
­

­xi 1 ua
i

­

­ua 1 ua
ij

­

­ua
j

1 . . . , i 5 1, . . . , n

as

ua
i 5 Di(ua), ua

ij 5 Dj Di(ua), . . .

The collection of all first derivatives ua
i will be denoted by u(1). Likewise,

the collections of all higher order derivatives will be denoted by u(2), u(3), . . . .
Consider an rth-order system of partial differential equations of n inde-

pendent and m dependent variables,

Eb(x, u, u(1), . . . , u(r)) 5 0, b 5 1, . . . , m̃ (1.3)

We recall that a conserved form of (1.3) is a differential (n 2 1)-form
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v 5 T i(x, u, u(1), . . . , u(r21))1 ­

­xi (dx1 ∧ . . . ∧ dx n)2 (1.4)

if

Dv 5 0 (1.5)

is satisfied for all solutions of (1.3) (D is the operator of total exterior
differentiation; see Anderson and Duchamp, 1984, or Kara and Mahomed,
2000, for a detailed analysis of total exterior differentiation).

Remark. When the above definition is satisfied, (1.5) is called a conserva-
tion law for (1.3).

It follows from (1.5) that

Di T i 5 0 (1.6)

on the solutions of (1.3), which is also referred to as a conservation law of
(1.3). The tuple T 5 (T 1, . . . , T n) is called a conserved vector of (1.3).

We now review some definitions and results relating Lie–Bäcklund
operators and possible conservation laws for systems which may not be
derivable from a variational principle (see Ibragimov et al., 1998, and refer-
ences therein).

Suppose ! is the universal space of differential functions. A Lie–
Bäcklund operator is given by

X 5 ji ­

­xi 1 ha ­

­ua 1 za
i

­

­ua
i

1 za
i1i2

­

­ua
i1i2

1 ??? (1.7)

where ji, ha P ! and the additional coefficients are

za
i 5 Di (Wa) 1 j jua

ij

za
i1i2 5 Di1 Di2(W

a) 1 j jua
ji1i2 (1.8)

???

and Wa is the Lie characteristic function defined by

Wa 5 ha 2 j jua
j (1.9)

The following theorem and definition are recalled from Kara and
Mahomed (2000).

Theorem 1. Suppose that X is a Lie–Bäcklund symmetry of the system
(1.3) such that the conserved form v of (1.3), given by (1.4), is invariant
under X. Then
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X(T i) 1 Dj (j j)T i 2 T jDj (j i) 5 0, i 5 1, . . . , n (1.10)

Definition 1. A Lie–Bäcklund symmetry X is said to be associated with
a conserved vector T (or its corresponding conserved form v) of the system
(1.3) if X and T satisfy (1.10).

2. APPLICATION TO THE WAVE EQUATION WITH VARIABLE
WAVE SPEEDS

2.1. c(x) 5 ex

We first consider the case c 5 ex, so that (1.2) becomes

ut 5 e2x vx , ux 5 vt (2.1)

It is shown in Bluman and Kumei (1986) that a Lie point symmetry generator
of (2.1) is

X 5
­

­x
2 t

­

­t
2 v

­

­v

which, consequently, is a nonlocal symmetry of (1.1). We use X to construct
an associated (nonlocal) conservation law for (1.1) by applying the identity
(1.10) and the conserved form (1.6) to (2.1). Equation (1.10) is the system

XT 1 1 T 1Dxj 2 T 2Dxt 5 0, XT 2 1 T 2Dtt 2 T 1Dij 5 0 (2.2)

where j 5 1 and t 5 2t and the conserved law (1.6) is

DtT 1 1 DxT 2 5 0 (2.3)

along the solutions of (2.1). As (2.1) is a first-order system, we will choose
the conserved vector (T 1, T 2) to be independent of derivatives of u and v,
i.e., dependent on x, t, u, and v. Thus, (2.2) becomes

­T 1

­x
2 t

­T 1

­t
2 v

­T 1

­v
5 0,

­T 2

­x
2 t

­T 2

­t
2 v

­T 2

­v
5 T 2 (2.4)

which has the characteristic form

dx
1

5
dt
2t

5
dv
2v

5
dT 1

0
,

dx
1

5
dt
2t

5
dv
2v

5
dT 2

T 2 (2.5)

Both equations in (2.5) have invariants c1 5 x 1 ln t, c2 5 u, and c3 5 x 1
ln v, so that T 1 5 f1(c1, c2, c3) and tT 2 5 f2(c1, c2, c3).

The conserved form (2.3) in expanded form is
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­T 1

­t
1 ut

­T 1

­u
1 vt

­T 1

­v
1

­T 2

­x
1 ux

­T 2

­u
1 vx

­T 2

­v
5 0

along the solutions of (2.1), so that

­T 1

­t
1 e2x vx

­T 1

­u
1 ux

­T 1

­v
1

­T 2

­x
1 ux

­T 2

­u
1 vx

­T 1

­v
5 0 (2.6)

Separating by derivatives of u and v, we have

ux :
­T 1

­v
1

­T 2

­u
5 0

vx : e2x ­T 1

­u
1

­T 2

­v
5 0 (2.7)

:
­T 1

­t
1

­T 2

­x
5 0

In terms of invariants, (2.7) become

ec1
­f1

­c3
1 ec3

­f2

­c2
5 0

ec11c3
­f1

­c2
1

­f2

­c3
5 0 (2.8)

­f1

­c1
1

­f2

­c1
1

­f2

­c3
5 0

It is now a matter of solving (2.8); we utilize some ad hoc method here.
Without delving into the details, it can be shown that a solution is given by

f1 5 f (l, c1) 1 g(m, c1), f2 5 H(c1) 2 ec1(g 2 f )

for some functions f, g, and H, where l 5 c2 1 ec3 and m 5 c2 2 ec3. Also,
the following equations are satisfied:

2
­g
­c1

1 2g 1 H 8 1 H 2 D(l, m) 1
1
2

(l 2 m)1­g
­m

2
­D
­l2 5 0

and f 1 g 5 2H 1 D.
We consider the following two cases.

2.1.1. ­g/­m 5 0, H 5 c1

We obtain D 5 L(m)/(l 2 m)2, g 5 21–2 c1 1 Ke2c1, where L is some
function of m and K is constant. Thus, f 5 21–2 c1 2 Ke2c1 1 L(m)/(l 2
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m)2. Then, f1 5 2c1 1 L(m)/(l 2 m)2 and f2 5 c1 2 ec1[2Ke2c1 2
L(m)/(l 2 m)2]. The conserved vector (T 1, T 2) is then given by

T 1 5 2x 2 ln t 1 (2exv)22L(u 2 vex) (2.9)

T 2 5
1
t Fx 1 ln t 2 tex1K

ext
2

L
(2exv)22G

We thus get

DtT 1 1 DxT 2 5
L8

4v2 [e22xut 2 vx 2 e2x(vt 2 ux)]

provided that

L
2v3 [e2xvx 1 e22xvt] 2

L
4exv2 2

L8

4v
5 0 (2.10)

and L8 Þ 0. That is, utt 5 e2xuxx has nonlocal symmetry X with associated
nonlocal conservation law with components given by (2.9) subject to (2.10).

2.1.1. g 5 m, H8 1 H 5 0 (H 5 K e2c1, K constant)

We now obtain 2m 2 D 1 1–2 (l 2 m)(1 2 ­D/­l) 5 0, so that

D(l 2 m)2 5
1
3

l3 1 ml2 2 3m2l 1 L(m)

for some function L(m). Thus,

D 5
1
12

[2c3
2 e22c3 1 7c2

2 e2c3 1 5c2 2 5ec3] 1
L
4

e22c3 (2.11)

g 5 c2 2 ec3, f 5 2K e2c1 2 c2 1 ec3 1 D

and

f1 5 2K e2c1 1 D

f2 5 K e2c1 1 ec1 [K e2c1 1 2c2 2 2ec3 2 D]

Finally, the components of the conserved vector are

T 1 5 2
K
tex 1

1
12 F2

u3

v2 e2x 1 7
u2

v ex 1 5u 2 5vexG 1
L(u 2 v ex)

4v2 e2x
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and

T 2 5
K

t2 ex 1 ex1 K
t ex 1 2u 2 2ex v 2

1
12 F2

u3

v2 e2x 1 7
u2

vex 1 5u 2 5v exG
1

L(u 2 v ex)
4v2 e2x 2

The vector (T 1, T 2) is a nonlocal conserved vector associated with X for (1.1) if

L8 1
L

v ex F2vt

v
1

2vx

v
1 1G 5 0

2.2. c(x) 5 x

We now consider the case c(x) 5 x; the corresponding first-order system
becomes

vt 5 x2vx , ux 5 vt (2.12)

The corresponding conservation law (1.6) is

­T 1

­t
1 x2vx

­T 1

­u
1 ux

­T 1

­v
1

­T 2

­x
1 ux

­T 2

­u
1 vx

­T 2

­v
5 0 (2.13)

which separates into

ux :
­T 1

­v
1

­T 2

­u
5 0

vx : x2 ­T 1

­u
1

­T 2

­v
5 0 (2.14)

:
­T 1

­t
1

­T 2

­x
5 0

We first find (T 1, T 2) associated with X 5 x ­/­x 2 v ­/­v, i.e., (1.10) becomes

x
­T 1

­x
2 v

­T 1

­v
1 T 1 5 0,

­T 2

­x
2 v

­T 2

­v

The characteristic form implies

T 1 5
1
x

f1(c1, c2, c3), T 2 5 f1(c1, c2, c3) (2.15)

where c1 5 t, c2 5 u, and c3 5 xv.
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Differentiating (2.14a) and (2.14b) gives

­2T 1

­v2 5 x2 ­2T 1

­u2 ,
­2T 2

­v2 5 x2 ­2T 2

­u2

and substituting (2.15), this pair becomes

­2f1

­c2
3

5 x
­2f1

­c2
2

,
­2f2

­c2
3

5 x
­2f2

­c2
2

As x cannot be written in terms of the ci , we separate by powers of x, so that

f1 5 A(c1)c2 1 B(c1)c3 1 D(c1), f2 5 P(c1)c2 1 Q(c1)c3 1 R(c1)

Then

T 1 5
1
x

[A(t)u 1 B(t)xv 1 D(t)], T 2 5 P(t)u 1 Q(t)xv 1 R(t)

and satisfying (2.14c) yields A8 5 D8 5 0 and B8 1 Q 5 0. Thus,

DtT 1 1 DxT 2 5 Aut 1 Q(t)x2vx 1 x(B(t)vt 1 P(t)ux) 1 xv(B8 1 Q)

We may choose Q 5 1. Thus, A 5 21, B 5 2t, and P 5 t, so that

T 1 5 2
1
x

(u 1 txv), T 2 5 tu 1 xv

associated with x ­/­x 2 v ­/­v.
We present a summary of the calculations regarding the other symme-

tries. An analysis using the symmetry generator u ­/­u 1 v ­/­v of (2.12)
yields functions independent of v so that any possible conserved quantity is
not nonlocal for utt 5 x2uxx.

Also, a linear combination of the above symmetries, viz., x­/­x 1 1–2 u­/
­u 2 1–2 v­/­v, yields T 1 5 1/x f1(c1, c2, c3) and T 2 5 f1(c1, c2, c3), where c1

5 u2/x, c2 5 t, and c3 5 xv2. Proceeding as above, it can be shown that f1

and f2 satisfy partial differential equations that yield

f1 5 4A1(c2)!c3c1 1 2D1(c2)!c3 1 2B1(c2)!c1 1 E1(c2)

f2 5 4A2(c2)!c3c1 1 2D2(c2)!c3 1 2B2(c2)!c1 1 E2(c2)

and therefore

T 1 5
1
x

[4A1(t)vu 1 2D1(t)v!x 1 2B1(t)u
1

!x
1 E1(t)]

T 2 5 4A2(t)vu 1 2D2(t)v!x 1 2B2(t)u
1

!x
1 E2(t)



Potential Symmetries and Associated Conservation Laws 2511

subject to D2 1 2D81 5 0, 2B81 2 B2 5 0, and A1, E1 constants. The coeffi-
cients need to be satisfied after substitution into (1.6) along the solutions
of (2.12).

Finally, the symmetry 2tx ­/­x 1 2 ln x ­/­t 1 (tu 2 xv) ­/­u 2 (tv 1
u/x)­/­v give rise to the associated symmetry condition on (T 1, T 2) given by

2tx
­T 1

­x
1 2 ln x

­T 1

­t
1 (tu 2 xv)

­T 1

­u
2 1tv 1

u
x2 ­T 1

­v
1 2tT 1 2

2
x

T 2 5 0

2tx
­T 2

­x
1 2 ln x

­T 2

­t
1 (tu 2 xv)

­T 2

­u
2 1tv 1

u
x2 ­T 2

­v
2 2xT 1 5 0

which is a coupled system and requires a more elaborate analysis than
done above.

2.3. c(x) 5 xm, m Þ 0, 1

Another interesting case, considered by Anco and Bluman (1996), is
c(x) 5 xm, m Þ 0, 1; we briefly consider the corresponding first-order system

ut 5 x2mvx , ux 5 vt (2.16)

whose conservation law (1.6) (after separating the ‘coefficients’ of ux and
vx) gives rise to the system

­2T 1

­v2 5 x2m ­2T 1

­u2 ,
­2T 2

­v2 5 x2m ­2T 2

­u2 ,
­T 1

­t
5

­T 2

­x
(2.17)

The association condition (1.10) of (T 1, T 2) with x ­/­x 1 (1 2 m) ­/­t 2
mv ­/­v reduces (2.17a), (2.17b) to

­2f1

­c2
3

5
­2f1

­c2
2

,
­2f2

­c2
3

5
­2f2

­c2
2

where T 1 5 (1/x) f1(c1, c2, c3), T2 5 xm21f2(c1, c2, c3) and c1 5 tx m21, c2 5
u, c3 5 vx m, so that

T 1 5
1
x

[A1(u 1 vx m, tx m21) 1 B1(u 2 vx m, tx m21)]

T 2 5 x m21[A2(u 1 vx m, tx m21) 1 B2(u 2 vx m, tx m21)]

Substituting these forms into (2.17c) and solving provides the following
additional form for T 2:

T 2 5 x m21[P2(tx m21)(u 1 vx m) 1 R2(tx m21)(u 2 vx m) 1 S2(tx m21)]

subject to ­A1/­c1 5 2­B1/­c1. The final choices for A1, B1, P2, R2, and S2

are made on substituting (T 1, T 2) into (1.6) along the solutions of (2.16).
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3. REMARKS

We have shown that a class of conservation laws for wave equations
with variable speeds can be constructed from nonlocal symmetries of the
equation using some recent results concerning the association of symmetries
with conservation laws. These are specific nonlocal symmetries, viz., potential
symmetries, as these are Lie–Bäcklund symmetry generators of the equivalent
system of first-order equations.
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